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P1. Let (X,B, µ) be a measure space, and let f : X → C be a measurable function. Then prove that
f = 0 a.e. if and only if

∫
E fdµ = 0 for every measurable set E ∈ B.

Solution: If f = 0 a.e. it follows that f1E = 0 a.e. and thus∫
E
fµ =

∫
X
1Efdµ = 0.

Let us assume now that
∫
E fdµ = 0 for every measurable set E ∈ B. As

0 =

∫
E
fdµ =

∫
E
Re(f)dµ+ i

∫
E
Im(f)dµ ⇒ 0 =

∫
E
Re(f)dµ =

∫
E
Im(f)dµ,

whence it follows that we can assume without loss of generality that f : X → R. Take E =
{x ∈ X | f(x) > 0}. We have that f1E ≥ 0 a.e.. Besides

0 =

∫
E
fdµ =

∫
1Efdµ,

which implies that 1Ef = 0 a.e.. By a similar argument with the set Ec we get that 1Ecf = 0
a.e., which concludes that f = 0 a.e..

P2. Prove that a space is complete if and only if the following property holds: for functions f, g;X →
C, if f is measurable and f = g a.e., then g is also measurable.

Solution: Assume that the space is complete. Let B ⊆ C an open set. Then, we notice that
g−1(B) \ f−1(B), f−1(B) \ g−1(B) ⊆ {x ∈ X | f(x) ̸= g(x)} which has measure 0. As the space
is complete, we have that g−1(B) \ f−1(B) and f−1(B) \ g−1(B) are measurable. The latter set
being measurable implies that (g−1(B) ∩ f−1(B)) is measurable due to

(g−1(B) ∩ f−1(B)) = f−1(B) \ (f−1(B) \ g−1(B)).

Thus we have that the set g−1(B) = (g−1(B) \ f−1(B)) ∪ (g−1(B) ∩ f−1(B)) is measurable,
and thus g is measurable by the fact that B was arbitrary. For the other direction, let A ⊆ X
be a measurable set of measure 0. Let B ⊆ A. Then 1A = 1B a.e., which implies that 1B is
measurable, and thus B is in the sigma algebra. In this way, we conclude the completeness.

P3. Let (X,B, µ) be a measure space. Let N = {N ∈ B : µ(N) = 0} be the σ-ideal of µ-null sets.
Show that the family B = {E ∪ F : E ∈ B, F ⊆ N ∈ N} is a σ-algebra, and there is a unique
extension µ̄ of µ to B.

Solution: First, we see that B is a sigma algebra. Indeed, we have that X ∈ B ⊆ B. On the
other hand, if E ∪ F ∈ B with E ∈ B and F ⊆ N ∈ N , we have that

(E ∪ F )c = Ec ∩ F c = Ec ∩N c ∪ (Ec ∩ F c \N c),

in where the first set is measurable and the second is contained in the set N which has measure
0. Hence, (E ∪ F )c ∈ B.
Now, we take Ei ∪ Fi ∈ B with Ei ∈ B and FI ⊆ Ni ∈ N , for i ∈ {1, 2}. Then, givem that



E1 ∪ E2 ∈ B, F1 ∪ F2 ⊆ N1 ∪N2 ∈ N , we have that

(E1 ∪ F1) ∪ (E2 ∪ F2) = (E1 ∪ E2) ∪ (F1 ∪ F2) ∈ B,

concluding thus that B is a sigma algebra. Finally, we define µ(E ∪ F ) := µ(E). This clearly
defines a measure (check this! it should follow from elementary properties). This extension is
unique by the fact that any extension of µ to B must give sets F ⊆ N ∈ N measure 0, thus if
ν is one of those extensions: ν(E ∪ F ) = ν(E) = µ(E).

P4. Let (X,B, µ) be a measure space. Prove that simple functions are dense in L1(X).

Solution: Let f ∈ L1(X) taking positive values. The, we already know that there are simple
functions (fn)n ⊆ L1(X) such that 0 ≤ fn ≤ f and fn ↗ f . Thus

∥f − fn∥1 =
∫

|f − fn|dµ =

∫
f − fndµ → 0.

Now, for a function f taking real values in L1(X), we divide f = f+ − f−. Let (fn)n and (gn)n
sequences of simple functions such that fn → f+ and gn → f−. Then the sequence of simple
functions (fn − gn)n is such that

∥f − (fn − gn)∥1 = ∥(f+ − fn)− (f− − gn)∥1 ≤ ∥(f+ − fn)∥1 + ∥(f− − gn)∥1 → 0 as n → ∞.

A similar argument gives the approximation of a complex function f , by dividing f = Re(f) +
iIm(f), concluding that simple functions are dense in L1(X).

P5. Let (X,B, µ) be a measure space and E ∈ B a set of positive measure. If {En}n∈N is an increasing
sequence of measurable sets and E =

⋃
n∈NEn prove that for every function f ∈ L1(X)

ĺım
n→∞

∫
En

fdµ =

∫
E
fdµ

and state and prove an analogous result for decreasing sequences.

Solution: We notice that 1En → 1E a.e., and thus 1Enf → 1Ef . This in addition to
|1Enf | ≤ |f | and the fact that |f | is integrable, implies by dominated convergence theorem, we
have that

ĺım
n→∞

∫
En

fdµ = ĺım
n→∞

∫
1Enfdµ =

∫
1Ef =

∫
E
fdµ,

concluding.

P6. Prove (yet again) the identity

ĺım
n→∞

(
1 +

x

n

)n
=

∑
k∈N0

xk

k!
.

Solution: We first notice that (
1 +

x

n

)n
=

n∑
k=0

(
n

k

)
xk

nk
(1)

2



Define the function

fn(k) =

{(
n
k

)
xk

nk if k ≤ n

0 otherwise
.

Consider the measure ν on N0 such that ν(A) = |A| for each A ⊆ N0 (we dote N0 of the discrete
sigma algebra, i.e. P(N)). Then, we have that∫

fndν =

n∑
k=0

(
n

k

)
xk

nk
.

On other hand, notice that

fn(k) =

(
n

k

)
xk

nk
=

n · (n− 1) · . . . · (n− k + 1)

nk

xk

k!
→ xk

k!
as n → ∞

for each k, as well as

|fn(k)| ≤ |x
k

k!
|,

where the left-hand side is integrable for ν. Indeed, if f(k) = xk

k! we have that∫
|f |dν =

∞∑
k=0

|x|k

k!
= e|x| < ∞.

Consequently, by DCT, we have that fn → f in L1(ν), which implies that

ĺım
n→∞

(
1 +

x

n

)n
= ĺım

n→∞

∫
fndν =

∫
fdν =

∑
k∈N0

xk

k!
.
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